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Summary

� Spatiotemporal patterns of Spartina alterniflora belowground biomass (BGB) are important

for evaluating salt marsh resiliency. To solve this, we created the BERM (Belowground Ecosys-

tem Resiliency Model), which estimates monthly BGB (30-m spatial resolution) from freely

available data such as Landsat-8 and Daymet climate summaries.
� Our modeling framework relied on extreme gradient boosting, and used field observations

from four Georgia salt marshes as ground-truth data. Model predictors included estimated

tidal inundation, elevation, leaf area index, foliar nitrogen, chlorophyll, surface temperature,

phenology, and climate data. The final model included 33 variables, and the most important

variables were elevation, vapor pressure from the previous four months, Normalized Differ-

ence Vegetation Index (NDVI) from the previous five months, and inundation.
� Root mean squared error for BGB from testing data was 313 g m−2 (11% of the field data

range), explained variance (R2) was 0.62–0.77. Testing data results were unbiased across BGB

values and were positively correlated with ground-truth data across all sites and years (r =
0.56–0.82 and 0.45–0.95, respectively).
� BERM can estimate BGB within Spartina alterniflora salt marshes where environmental

parameters are within the training data range, and can be readily extended through a repro-

ducible workflow. This provides a powerful approach for evaluating spatiotemporal BGB and

associated ecosystem function.

Introduction

Spatiotemporal belowground biomass (BGB) patterns from tidal
marsh vegetation provide an important window into ecosystem
function and resiliency. High BGB in tidal marshes increases soil
organic matter and promotes vertical accretion by increasing soil
volume and resisting erosion (Kirwan & Guntenspergen, 2012;
Cahoon et al., 2021). Where BGB is high, marsh elevation is
higher and marshes are more resilient to sea level rise (Nyman
et al., 2006; Mudd et al., 2009; Kirwan & Megonigal, 2013).
Marshes with greater BGB also tend to sequester more carbon,
depositing as much as 1713 g C m−2 yr−1 in soils, termed as
‘blue carbon’ (Mcleod et al., 2011). Therefore, BGB assessments
can identify vulnerable marshes vs those that may continue to
provide valuable services such as carbon (C) sequestration. This is
particularly important as sea level rise is accelerating and the
Anthropocene has seen global marsh losses of 50% to 65%
(Dahl, 1990; Lotze et al., 2006; Gedan & Silliman, 2009). Previ-
ous landscape estimates of BGB typically relied either on time
consuming field sampling (see Stagg et al., 2017), or landscape

modeling that depends on a constant root : shoot ratio, which
misses spatiotemporal variability (Morris et al., 2002; Mudd

et al., 2009; Langston et al., 2021). This article presents a new
solution for estimating near-real time spatiotemporal trajectories
in salt marsh BGB, the Belowground Ecosystem Resiliency
Model (BERM). BERM provides landscape-scale estimates of
BGB of the salt marsh plant, Spartina alterniflora, Loisel (Kartesz,
2015; USDA & NRCS, 2019) (=Sporobolus alterniflorus;
Peterson et al., 2014a,b), a cosmopolitan herbaceous graminoid
that typically grows in monoculture. We focused on Spartina
alterniflora because it is found on all three United States coasts and
on nearly every continent as a native or colonizing species (Pennings
& Bertness, 2001; Strong & Ayres, 2016). To estimate Spartina
alterniflora BGB, BERM uses a combination of readily available
climate datasets, digital elevation model (DEM) data, and remote
sensing derived aboveground biophysical variables. The procedure
employed in BERM can be adapted to evaluate BGB patterns of
other plant species and communities in the future. This article aims
to introduce BERM and provide examples of the model output.
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BERM estimates BGB on a monthly time-step and includes
variables related to gross and net primary production (GPP/
NPP). GPP variables can constrain and partition estimates of
biomass, given that GPP = NPP + autotrophic respiration, and
NPP = total annual BGB production + total annual above-
ground biomass (AGB) production. GPP/NPP can be readily
derived through remote sensing methods (Ruimy et al., 1994;
Running et al., 2004; Turner et al., 2006; Gitelson et al., 2014;
Tao et al., 2018). For example, GPP is often estimated through
canopy photosynthesis models that assume a close relationship
between GPP, canopy chlorophyll (CHL) concentration, and leaf
area index (LAI), both often measured through remote sensing
techniques (Gitelson et al., 2006, 2014). LAI provides an index
of the leaf area over which CHL is distributed, together signaling
photosynthetic capacity.

Production efficiency models are another method for estimat-
ing GPP/NPP. For NPP, the productivity quantity most related
to BGB, such models rely on the fraction of absorbed photosyn-
thetically active radiation (fAPAR), downwelling PAR, and pro-
duction efficiency (ɛ), e.g. the conversion efficiency of light
energy into organic matter (Monteith, 1972; Kumar & Mon-
teith, 1981; Ruimy et al., 1994). This approach can be adapted
to a remote sensing framework by substituting vegetation indices
for fAPAR, such as the Normalized Difference Vegetation Index
(NDVI) (e.g. Ruimy et al., 1994). Furthermore, ɛ is a complex
variable that represents the combined effects of photosynthetic
efficiency (often referred to as light use efficiency) and respiration
losses, or C use efficiency. The ɛ value is usually estimated as a
function of temperature, soil moisture, vapor pressure (used to
estimate vapor pressure deficit/evapotranspiration), or PAR (e.g.
Ruimy et al., 1994; Xiao et al., 2011; Barr et al., 2013;
Massmann et al., 2019; Hawman et al., 2021), and by including
these variables in our model we potentially capture quantities that
drive ɛ.

In marshes, high salinity can cause physiological stress (Barr
et al., 2013), for which marsh elevation, temperature, tidal flood-
ing, and precipitation might serve as readily-available proxies.
This is because higher elevations receive less soil flushing from
tidal flooding, higher temperatures increase evapotranspiration
and concentrate soil salts, and precipitation decreases soil salinity
through freshwater dilution (Mendelssohn & Morris, 2002). An
added complication is that tidal flooding can either stimulate or
reduce production. Shallow and abbreviated tidal flooding stimu-
lates production by flushing salt from marsh soils and delivering
dissolved nutrients (Mendelssohn & Morris, 2002). Deep and
prolonged flooding conversely reduces plant available oxygen,
creating metabolic deficits, and, when extreme, can result in plant
death and marsh loss (Morris et al., 2002; Kirwan & Megonigal,
2013). Thus, including biophysical variables that affect salinity is
likely important for predicting GPP/NPP and therefore BGB.

We also needed to account for the partitioning of biomass
between aboveground vs belowground production. For this, we
relied on estimates of AGB and foliar nitrogen (N) concentra-
tion, as these are linked with BGB in theoretical and empirical
studies (Morris et al., 2013; O’Connell et al., 2014, 2015). We
previously used foliar N concentration and AGB to explain up to

86% of the variation in root : shoot ratios and 76% of end-of-
growing season BGB in freshwater Scheonoplectus acutus marshes
(O’Connell et al., 2014, 2015). Foliar N is an integrative mea-
sure of plant available N (O’Connell et al., 2015), is a recognized
driver of root productivity (Morris et al., 2013), and contributes
to Spartina alterniflora NPP (Morris, 1982). Further, root :
shoot ratios generally decrease with increasing canopy foliar N
across plant species (Levin et al., 1989; Dewar, 1993; McCon-
naughay & Coleman, 1999; Deegan et al., 2012; Morris et al.,
2013; O’Connell et al., 2014, 2015), especially in coastal wet-
lands where growth is N-limited (Morris et al., 2013).

BERM estimates BGB at a monthly time-step. To accomplish
this, we measured the timing of plant spring green-up and
monthly variation in the relationship between BGB and above-
ground variables such as AGB. These relationships vary season-
ally because Spartina alterniflora canopies senesce in the winter
and sprout in spring from underground rhizomes (Gallagher et
al., 1984). To support spring growth, belowground plant
resources are nearly depleted through translocation into above-
ground tissues (Gallagher, 1983). Belowground reserves are then
gradually returned, but are not fully replenished until late sum-
mer (Gallagher, 1983). Thus, AGB, BGB, and root : shoot ratios
vary seasonally. Further, spring green-up dates for Spartina
alterniflora can vary by > one month across short distances,
driven by elevation-related differences in marsh soil temperature
(O’Connell et al., 2020). Thus, plants meters apart can be in dif-
ferent phenological stages. Our modeling process accounts for
spatiotemporal phenology, and aboveground vs belowground
variation by estimating the start of the growing season on a pixel-
wise basis.

To parameterize an easily deployable model, we relied on
freely available data and utilized an open-science research process.
Vegetation parameters we tested as potential inputs in BERM
included those listed in Table 1, which represent metrics related
to plant resource availability, photosynthetic and production
capacity, phenology, and environmental stress. BERM inputs
were combined through a machine learning framework capable
of capturing complex relationships. Table 1 parameters can
either be estimated through remote sensing methods (Kokaly
et al., 2009; Mishra et al., 2012; Byrd et al., 2014; O’Connell
et al., 2014, 2015, 2020; Ghosh et al., 2016; Alber & O’Con-
nell, 2019), or through existing datasets such as Daymet or the
three-dimensional (3D) digital elevation map (Thornton et al.,
2017; US Geological Survey, 2019). Additionally, we used a
reproducible research flow to document our modeling approach
and include an open-source model code DOI with this
manuscript, allowing continued use and development of BERM.

BERM predicts monthly gridded site-wide spatiotemporal
variation in Spartina alterniflora BGB. We accomplished this by:
(1) creating a comprehensive remotely derived dataset of poten-
tial aboveground BGB proxies; (2) applying a machine learning
approach to model BGB through a reproducible research flow;
(3) evaluating model performance across training and testing
datasets; and (4) providing example BERM output to demon-
strate its utility. We also describe BERM development and dis-
cuss its applications and current limitations. This is the first step
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towards enabling long-term coast-wide assessments of BGB in
Spartina alterniflora marshes.

Materials and Methods

Overview

To develop BERM, we conducted a comprehensive field cam-
paign to collect biophysical ground-truth data for model training.
We began by creating a series of extreme gradient boosting (EXB)

machine learning models to predict aboveground vegetation
parameters related to plant performance, resource availability,
photosynthetic capacity, and phenology (AGB, LAI, CHL, foliar
N) (Table 1), where Landsat-8 data served as the predictors. We
also gathered other environmental data, as listed in Table 1. We
then calculated derived aboveground vegetation and environmen-
tal variables (Table 1). Next, we combined the aboveground pre-
dictors in a final EXB model, and included a parameter selection
step to remove unimportant variables. Once parameterized,
BERM relies only on these finally selected datasets to make a pre-
diction, and can theoretically estimate any Spartina alterniflora
marsh pixel over the available time series of Landsat-8 and
Daymet, provided the input parameters are within the parameter
space of our training data.

Study sites

BERM calibration data came from four salt marshes along the
Georgia coast, USA, including flux tower marsh A (measured
2013–2019), and three sites sampled during the 2016 growing
season, flux tower marsh B, UGAMI marsh, and Skidaway. All
sites were dominated by Spartina alterniflora monocultures and
experienced similar environmental conditions (Fig. 1; Table 2).
Flux tower marshes A and B were in relatively undisturbed
marshes 1. 5 km from each other, c. 620 m north and southeast
of an eddy covariance carbon flux tower operated by the Georgia
Coastal Ecosystems Long-Term Ecological Research (GCE-
LTER) project on Sapelo Island, GA. Flux tower marsh B was in
a lower elevation area with greater tidal creek density than flux
tower marsh A. UGAMI marsh, adjacent to the University of
Georgia Marine Institute also on Sapelo Island, was a formerly
impounded marsh that experienced altered hydrological cycles
(Craft, 2001). The Skidaway marsh was on Skidaway Island, GA,
just south of Savannah, GA, in a more urbanized watershed. Each
marsh consisted of vegetated areas traversed by tidal channels.
Tall (> 70 cm), medium (30–70 cm) and short (< 30 cm)
Spartina alterniflora height-forms were found at each site along
elevation-driven marsh edge to interior gradients. This character-
istic height-form zonation is caused by elevation-related environ-
mental factors such as the degree of tidal flooding, soil salinity,
and soil anoxia. The marsh interior represents a higher elevation
area with less frequent flooding, creating a higher salinity, stress-
ful environment with shorter vegetation (Mendelssohn & Morris,
2002). Tides were semi-diurnal with a range of ˜1.2 m over the
vegetation.

Field data

We collected field data to estimate AGB, BGB, LAI, foliar N,
and CHL concentration. AGB was estimated allometrically from
stem height and counts within permanent 1 m2 plots. Leaf CHL
was estimated via a SPAD chlorophyll meter (Spectrum Tech-
nologies, Aurora, IL, USA), calibrated against leaf-level CHL
extractions (see Supporting Information Methods S1; Fig. S1).
Foliar N concentration was estimated via a CHN Analyzer (see
Methods S2). LAI was measured via an AccuPAR LP-80

Table 1 We tested 131 potential features for inclusion as Spartina
alterniflora belowground biomass model predictors, listed here along with
their data sources.

Potential features Data source

Elevation (m) Digital elevation model (DEM)
Green-up day of year (DOY) DOY where Σ(mean daily soil

temp > 9.9°C) > 202
Days since green-up Calculated from green-up day of

year
Aboveground biomass (AGB) (g
m−2)a,b,c,d,e

Modeled from Landsat-8 data

Percent foliar chlorophyll (CHL)
(mg chlorophyll g−1 dried leaf
tissue)a,b,c,d,e

Modeled from Landsat-8 data

Leaf Area Index (LAI)a,b,c,d,e Modeled from Landsat-8 data
Total foliar nitrogen (N)a,b,c,d,e AGB × percent foliar N
Percent foliar N (g N g−1 dried leaf
tissue)a,b,c,d,e

Modeled from Landsat-8 data

Normalized Difference Vegetation
Index (NDVI)a,b,c

Calculated from Landsat-8 bands

Inundation intensitya,b (Mean Higher High Water
(MHHW) (from National Oceanic
and Atmospheric Administration
(NOAA) station) − elevation (from
a DEM))/(MHHW −mean sea
level (from NOAA
station)) × percent flooded
observed

Dry intensitya,b (elevation (from DEM) −Mean
Lower LowWater (MLLW) (from
NOAA station))/(mean sea level
(from NOAA station) −
MLLW) × percent dry observed

Percent flooded observed Modeled from Landsat-8 data
Land surface temperature (LST)
(°C)a,b,c

Calculated from Landsat-8 bands

Day length (s d−1) Daymet
Total daily photosynthetically active
radiation (PAR) (MJ m−2 d−1)a,b

Calc. from Daymet vars:
(2.114 × shortwave
radiation × day length)/
1000 000

Precipitation (mm d−1)a,b Daymet
Daily maximum temperature (°C)a,b Daymet
Daily minimum temperature (°C)a,b Daymet
Daily average vapor pressure (Pa)a,b Daymet

aIncluded lags of the previous 1–5 months of the variable.
bIncluded rolling previous 1–5 months mean of the variable.
cIncluded change over the previous 1−5 months in the variable.
dIncluded change in the variable over growing season.
eIncluded the variable value from the end of previous growing season.
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Ceptometer (Meter Environment, Pullman, WA, USA), which
measures LAI via canopy light transmittance. For each plot, LAI
was calculated from the average of two downwelling (above
canopy) and three upwelling (below canopy) radiation measure-
ments. To estimate BGB, we collected standing root cores (7.62
cm × 30 cm) near the permanent plots. Cores were centered on
a plant stem clump. Clumps averaged three stems (range: 1–9
stems). Aboveground and belowground core material was washed
on 1-mm mesh, sorted into live and dead vegetation, and oven-
dried at 60°C to constant mass. Live BGB material was identified
by root turgor, color, and texture. We estimated plot-scale BGB
by multiplying the stem counts from the permanent vegetation
plots by the core live root : shoot ratio, a scaling method that
accounts for the stem variation between low-density tall-form
plants and high-density short-form plants. The number of field
samples differed among sites and variables (see Methods S3,
Table S1).

We also estimated the start of the Spartina alterniflora growing
season. To help with this, we collected soil temperature data,
which predicts the annual day of spring green-up (O’Connell
et al., 2020). We collected soil temperature with temperature
probes (Hobo UA-002-08; Onset Computer Corp., Bourne,
MA, USA), buried 10 cm into the soil at 18 points along a marsh
edge to interior transect. These probes collected measurements at
15-min intervals during a month-long field campaign from Jan-
uary to February 2018 (see Alber & O’Connell, 2019). We used
this information to calibrate a soil temperature model and

estimate the start of the growing season for each pixel (see Sec-
tion ‘Estimating the day of spring green-up’).

Deriving comprehensive remotely-sensed datasets of
potential aboveground proxies for predicting BGB

Preprocessing Landsat-8 data We used the field data to train
remote sensing models developed from the Tier 1 Landsat-8 sur-
face reflectance product, freely available from the US Geological
Survey (USGS). Landsat-8 provides moderate resolution (30 m
× 30 m) multispectral data with global coverage and 16-d return
intervals, and collects observations close to solar noon. Image
acquisition time is provided in the image metadata. At our loca-
tion, multiple Landsat-8 scenes overlap, resulting in up to four
observations/month/pixel. We associated our field data with their
spatiotemporally corresponding Landsat-8 pixel footprints for
the period of observation (June 2013–August 2019, Flux tower
marsh A: five pixels/scene; Other sites: three pixels/scene). We
averaged field observations from the same date and pixel before
model training (3–5 observations/pixel/date). We preprocessed
the Landsat-8 data by removing pixels representing clouds and
cloud shadows, identified via the Landsat-8 ‘pixel_qa’ mask, a
quality control flag (Foga et al., 2017). We additionally removed
pixels representing flooded marsh conditions, identified via an
in-house flood model. This random forest model predicts binary
flood status (dry/flooded) from Landsat-8 surface reflectance,
where images from the ‘GCESapelo’ PhenoCam served as

Fig. 1 Field data collections in our study
came from four Spartina alterniflora salt
marshes in Georgia, USA. Flux tower
marshes A and B were adjacent to an eddy
covariance carbon flux tower on Sapelo
Island, GA. UGAMI marsh, also on Sapelo
Island, was an impounded marsh that
experienced altered hydrological cycles. The
Skidaway marsh was on Skidaway Island,
GA, just south of Savannah, GA, in a more
urbanized watershed. In the overview map
(top left), white stars show the locations of
Skidaway (north star) and Sapelo (south star)
islands. White circles in the close-up maps
indicate locations of vegetation plots.
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ground-truth data. The ‘GCESapelo’ PhenoCam is part of the
National PhenoCam network and auto-collects digital imagery of
the Spartina alterniflora marsh area near the flux tower every 30
min year-round, and clearly depicts flooding events (see O’Con-
nell & Alber, 2016). We also used upland and permanent creek
observations in the model as end-points of homogeneous pixels
(100% cover of dry upland or deep water). This model used 15
579 pixel observations (1195 were flooded observations), 7848 of
which were withheld from model training as testing data (includ-
ing 359 flooded observations). Within the testing data, the model
was 99% accurate for identifying flooded pixels and misclassified
nine observations as flooded that were actually dry.

After removing clouds and flooding from the Landsat-8 time
series, lower elevations with more flooding had more gaps and
thus lower observation temporal density. For example, for Land-
sat pixels corresponding with our field data, pixels with elevations
of 0.6, 0.7, 0.8 and 0.9 m had 40%, 22%, 9% and 11% of pixels
classified as flooded, respectively. Note that most of the pixels
were at elevations of 0.7 and 0.8 m (e.g. 32% and 51% of data,
respectively), which is similar to the elevation distribution within
vegetated Spartina alterniflora marsh in the broader study area.

Before joining the field and satellite data, we used linear inter-
polation to fill gaps in the field data time series, providing a field
estimate that was as close as possible to the Landsat-8 overpass
date. For field data, we did not extrapolate to gap-fill data outside
of our field season, and there were no gaps > 1 month. We could
gap-fill the field data because we assumed plant production was
progressive through time, which may cause us to miss small dis-
turbances, but allows us to track annual cycles in vegetation, as
the marsh did not experience severe disturbances that would
change plant trajectories. The result of these steps was a regularly
spaced field dataset that could be joined to the remote sensing
data despite remote sensing data gaps caused by clouds and tides.

EXB modeling After pre-processing, the next step was to predict
aboveground parameters from the remote sensing data. We began
with physical quantities related to aboveground vegetation: AGB,
CHL, LAI, and foliar N (Table 1). Our process was to create a

series of EXB models for these variables, which could then be
used to estimate BGB through a final EXB model.

EXB is a machine learning tool developed as a scalable imple-
mentation of the gradient boosting framework (Friedman et al.,
2000; Friedman & Meulman, 2003; Elith et al., 2008; Chen &
Guestrin, 2016), available in the R ‘XGBOOST’ package. EXB is an
ensemble method that combines many weak learners, e.g.
machine learning predictive models, into a stronger overall pre-
dictor that is both computationally efficient and minimizes over-
fitting (Friedman, 2001; Chen & Guestrin, 2016). EXB does not
have model assumptions, trees are not independent of one
another, and is robust to the inclusion of correlated and non-
informative predictors (Friedman &Meulman, 2003; Elith et al.,
2008; Chen et al., 2018).

EXB modeling workflow Our EXB modeling workflow
employed nested resampling (Bischl et al., 2012) (Fig. S2),
which divides the data through inner and outer cross-validated
data folds. This fits the model multiple times, which is computa-
tionally expensive but avoids model bias and overfitting (Bischl
et al., 2012) (see Methods S4). During the creation of training
and testing sets, we also kept observations from the same site and
date together, a procedure known as spatial cross-validation,
which helps account for spatial auto-correlation within a site to
avoid overfitting (Schratz et al., 2019) (Fig. S2). We additionally
stratified by site to ensure that training and testing sets contained
observations from all sites, and were thus more representative of
the larger data.

The outer resampling for intermediate aboveground models
used only a single cross-validation, consisting of a single training
and testing set (65% and 35% of data, respectively). To create
the inner resampling in all models, we divided the training data
from the outer fold only once into an inner training and testing
set (85% and 15% of the outer training data, respectively). As
mentioned earlier, this inner resampling was used to tune the
model hyperparameters on the inner training data, and validated
against the inner testing data before model fitting. To select
hyperparameters, we used a grid search with a resolution of 20,

Table 2 Mean values for ground-truth data representing the key characteristics used to estimate Spartina alterniflora belowground biomass for each site.

Variable Flux marsh A Flux marsh B Skidaway UGAMI marsh

Belowground biomass (BGB) (g m−2) 1256 (481–2495) 640 (191–1062) 461 (217–918) 1503 (799–2221)
Above ground biomass (AGB) (g m−2) 336 (137–788) 161 (98–221) 237 (124–440) 264 (152–479)
Leaf area index (LAI) 1.05 (0.41–2.28) 0.60 (0.30–1.19) 0.75 (0.39–1.01) 1.21 (0.86–1.78)
Percent foliar nitrogen (N) 0.98 (0.80–1.32) 0.89 (0.68–1.15) 0.67 (0.52–0.89) 0.98 (0.72–1.45)
Percent foliar chlorophyl (CHL) 0.66 (0.50–0.85) 0.57 (0.41–0.72) 0.58 (0.48–0.68) 0.75 (0.60–0.99)
Green-up day of year 34 (6–51) 46 (46–46) 47 (46–49) 47 (46–49)
Elevation (m) 0.73 (0.65–0.80) 0.72 (0.69–0.75) 0.79 (0.72–0.87) 0.80 (0.75–0.85)
Inundation intensity 0.13 (0.02–0.48) 0.10 (0.05–0.17) 0.08 (0.02–0.23) 0.06 (0.03–0.11)
Percent flooded observed 0.27 (0.05–0.70) 0.22 (0.13–0.29) 0.20 (0.10–0.38) 0.15 (0.08–0.21)
Daily maximum temperature (°C) 31 (27–35) 31 (27–35) 31 (27–35) 31 (27–35)
Daily minimum temperature (°C) 22 (17–25) 22 (18–25) 21 (16–24) 22 (18–25)
Daily mean precipitation (mm d−1) 3.45 (1.29–9.10) 3.44 (1.23–9.33) 4.90 (1.87–8.06) 3.44 (1.26–9.23)

Numbers in parenthesis indicate the range observed (minimum–maxium) across the dataset.
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and selected the hyperparameters that best fit the data as indi-
cated by a minimized root mean squared error (RMSE) between
the observed and predicted inner testing data outcome, where
RMSE was: RMSE = ((Σ(obsi − predi)

2)/n)(1/2) for each vari-
able, obsi and predi were the observed and predicted values for
each sample, and n was the sample size (Hyndman & Koehler,
2006). For the final BGB model, we used five cross-validated
folds in the outer resampling, resulting in five inner training and
testing sets for model tuning and five outer training and testing
sets for final model fitting (Fig. S2).

We evaluated the goodness of model fit for the testing data in
the outer resampling only, based on mean absolute error (MAE),
RMSE, normalized RMSE (nRMSE), coefficient of variation of
RMSE (COV RMSE) and the Pearson’s correlation coefficient,
r, between the field collected ground-truth data and the predicted
BGB outcome. For these calculations, we used MAE = Σ(obsi −
predi)/n (Willmott & Matsuura, 2005), nRMSE = RMSE/
(obsmax − obsmin) × 100, where obsmax and obsmin were the max-
imum and minimum observed values, respectively, and COV
RMSE = RMSE/(obsmean) × 100.

EXB models of aboveground vegetation We employed the
model workflow (see Section ‘EXB modeling workflow’) to cre-
ate EXB models for AGB, LAI, CHL, and foliar N, where the
field data, including gap-filled estimates, were the response vari-
ables. As predictors, we used Landsat-8 spectral reflectance Bands
(B) 1–8, vegetation indices (NDVI, Visible Atmospherically
Resistant Index (VARI)), and a phenology index (Rouse et al.,
1974; Gitelson et al., 2002; O’Connell et al., 2017).

NDVI¼ B5�B4ð Þ= B5þB4ð Þ

VARI¼ B3�B4ð Þ= B3þB4þB2ð Þ

Phenology Index¼ B5�B6ð Þ= B6þB5ð Þ

We chose these indices because they track vegetation but repre-
sent different aspects of growth, as they were not correlated (Pear-
son’s r of 0.30, −0.03, and 0.38, respectively for correlations
among NDVI vs VARI, NDVI vs Phenology Index, and VARI
vs Phenology Index).

Once we had working biophysical models, we predicted these
parameters for any Landsat-8 pixel representing Spartina alterni-
flora marsh across the available time series of Landsat-8, which at
the time of analysis was May 2013 to December 2019. In this
way, we estimated aboveground biophysical proxies even for
months when we did not have corresponding field data (e.g. at
Flux marsh B, UGAMI marsh, and Skidaway).

Gathering additional aboveground physical variables needed to
estimate belowground biomass (BGB) We also acquired grid-
ded climate data to inform our BGB model, including land sur-
face temperature (LST) as estimated from Landsat-8 thermal
bands, derived following methods described in Alber & O’Con-
nell (2019). Additionally, we used Daymet 1-km products, which
are daily surface weather and climatological summaries including

daylight (in seconds), total daily precipitation (in millimeters),
incident shortwave radiation flux density (average over the day-
light period in W m−2), maximum and minimum air tempera-
ture (daily 2-m air temperature in °C), and vapor pressure (daily
average partial pressure of water vapor in pascals).

We also included pixel elevation. For the flux tower marshes this
was estimated from 1-m DEM, corrected via a Trimble R6 real
time kinematic (RTK) global positioning system (GPS) receiver,
with sub-meter vertical and horizontal accuracy (see Hladik et al.,
2013). This DEM was resampled to match the 30-m spatial reso-
lution of Landsat-8. Elsewhere, we measured plot elevation in the
field via RTK, which we used too created a pixel average elevation.
Elevation served as a proxy for the environmental variables that
vary along coastal marsh elevation gradients.

Finally, we included metrics related to tidal inundation intensity
(based on local tidal flood heights and the frequency of flooding),
as well as dryness intensity (based on a lack of tidal flushing, soil
saturation, and frequency of dry observations). We used the
random forest flood model described previously to estimate the per-
cent of cloud-free Landsat pixels that were flooded or dry. Landsat-
8 collects observations at solar noon every 16 d during cloud-free
conditions. Thus, percent flooded or dry pixel observations do not
capture all flooding, but, given a sufficiently long time series,
should provide a proxy for the frequency and duration of flooding.

We combined these percent flooded and dry variables with the
normalized local height below Mean Higher High Water
(MHHW) and above Mean Lower Low Water (MLLW) for each
pixel, related to the depth of tidal flooding during high tides and
soil saturation during low tides, respectively. We normalized these
values by dividing by the range between MHHW or MLLW and
Mean Sea Level (MSL). These were monthly water level observa-
tions in the vertical datum NAVD88 from the nearest bench-
marked NOAA sampling station, Fort Pulaski, GA (Station ID:
8670870). Final inundation and dryness metrics were:
Inundation intensity = (MHHW − elevation)/

(MHHW −MSL) × percent flooded.
Dryness intensity = (elevation −MLLW)/

(MSL −MLLW) × percent dry.

Estimating the day of spring green-up For each pixel, we esti-
mated the day of green-up and the growing season day (number
of days since green-up). This required that we first estimate soil
temperature from cloud and tide-free Landsat-8 LST observa-
tions. For this, we estimated LST for each pixel from Landsat-8
B10 as described in Alber & O’Connell (2019). Then we filled
LST gaps of > 1 month. For these gaps, we estimated LST as the
average difference between mean air temperature (Ta, estimated
from Daymet as (maximum Ta − minimum Ta)/2) and pixel
LST for the given week in the year. We then interpolated LST
for each pixel to create a daily LST estimate.

Once we had a daily LST estimate, we predicted pixel mean
daily soil temperature. To predict soil temperature, we used the
tidbit field soil temperature data as ground-truth information and
adapted the method of Plauborg (2002), who estimated soil tem-
perature from lags of previous air temperature combined with
Fourier terms. We adapted this method to use LST and lags of
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mean air temperature. We explored the inclusion of lags of 1 to 11
d because Zheng et al. (1993) noted that soil temperature was
influenced by past temperatures of up to 11 d. We started by
adding lags incrementally in a stepwise fashion and removed terms
that were non-significant and did not reduce Akaike information
criterion (AIC) by more than 2. We also included pixel elevation
as a predictor, as we previously identified elevation as a significant
factor influencing spatial variation in soil temperature (Alber &
O’Connell, 2019; O’Connell et al., 2020). We also included
Fourier terms (sine and cosine) for estimating the influence of time
of year on soil temperature. Models we tried took the form:

T s ¼ α0þα1Elevationþα2LSTþα3T aðD�1Þ þ . . .

þ αnT aðD�nÞ þβ1sin 2πDð1=hÞ
� �

þ δ1cos 2πDð1=hÞ
� �

þβ2sin 4πDð1=kÞ
� �

þ δ1cos 4πDð1=kÞ
� �

where Ts was the mean temperature at 10 cm soil depth, D was
day of year, LST was the daily interpolated LST estimate for that
pixel, Ta is the air temperature at lags of D − 1 through D − n,
and αn, βn, and δn were estimated constants. The Fourier terms
had constants k and h, which we estimated by fitting all possible
k and h from 1 to 60 and selecting as best those that minimized
AIC. Values of zero for αn, βn, and δn allow the term to drop
from the model.

Once we had soil temperature, we estimated the day of spring
green-up for each pixel based on the total growing degree days
experienced by roots by calculating total soil growing degree days
(TDD):

TDD¼ΣDailymeanTs>9:9∘C

where 9.9°C is the physiological base temperature identified by
O’Connell et al. (2020), and temperatures above the physiologi-
cal base temperature contribute to phenological development.
Plants are assumed to initiate spring green-up when TDD sums
above the base temperature exceeds 202, the threshold identified
by O’Connell et al. (2020). We validated this green-up model
with PhenoCam-derived estimates of green-up date for marsh
areas within the PhenoCam field of view (see O’Connell et al.,
2020). We also calculated growing season days (days since spring
green-up date). We also included LST itself as a BGB predictor
because it represents temperatures experienced by shoots, and
aboveground physiology and growth should vary with tempera-
ture. Thus, we included temperatures experienced by both roots
and shoots in the modeling process.

Further processing of aboveground predictors BGB at any time
point might depend on antecedent conditions. To account for this,
we considered combinations of lagged predictor variables. Before
we could evaluate antecedent conditions, we first needed to trans-
form the remote sensing predicted aboveground vegetation from
an irregular time series with gaps from clouds and tides into a

regularly spaced time series. For this, we used linear approximation
to create a single monthly estimate for each predicted variable that
corresponded to the middle of each month. Then we created vari-
ables representing past vegetation dynamics. These variables
included the rolling monthly means of all potential predictors for
periods of 1–5 months, the change in each variable over one to five
months, and changes in each variable from the start of the growing
season. Up to five months was considered so that even end of sea-
son (spring, summer, fall, winter) growth included 2 months from
the previous season, allowing previous conditions to influence the
results. For nongrowing season months (Nov-green-up), we
included peak growing season means from the previous growing
season, as evidence from field data suggested past growing season
data might determine over-wintering BGB. We could create these
derived variables for all sites by using the aboveground models to
predict observations where we lacked field data. Landsat-8 data
were first available in 2013. Because some of the included variables
required previous year estimates, we began our belowground
model predictions in June 2014, providing an adequate time series
of data to inform the model.

Final extreme gradient boosting (EXB) model to estimate
belowground biomass (BGB) from aboveground predictors

To estimate monthly pixel-wise BGB, we used the EXB modeling
workflow described in Section ‘EXB modeling workflow’ to cre-
ate a final set of BGB EXB models, where field-estimated BGB
was the response variable. To select model predictors, we began
with those listed in Table 1, used the inner cross-validation to
tune model hyperparameters as described in Section ‘EXB mod-
eling workflow’, and then refit the inner training data with these
hyperparameters. We then extracted the variable importance
from the results, where variable importance was the gain or frac-
tional contribution of each predictor to the model and ranges
from 0 to 1 (low-high importance). We retained predictors with
variable importance > 0.005 across at least three of the five inner
training sets. We selected 0.005 as the cut-off because variables
with less importance contribute little to the prediction. We then
used only these selected parameters and re-tuned the hyperpa-
rameters before fitting the model to the outer training set. This
resulted in five outer training models for BGB. We predicted
BGB from each of these final five outer cross-validated models
and used the mean as the final model prediction. For the final
BGB model, we also calculated additional goodness-of-fit metrics
obtained by regressing the observed values (obsi) (response vari-
able) against the predicted values (prei) (see Methods S5).

Example model output

BERM provides monthly predictions of BGB and the above-
ground inputs that inform BGB at a 30 m × 30 m spatial grid.
To illustrate BERM outputs, we applied it to a sample area (Fig.
2, methods and intermediate results in Methods S6). A landscape
evaluation of spatiotemporal vegetation trends is outside the
scope of this article, as our main goal was to describe the BERM
algorithm.
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Results

Comprehensive remotely derived dataset of potential
aboveground proxies for predicting belowground biomass
(BGB)

We used the EXB workflow to create remote sensing models of
all of the aboveground vegetation characteristics considered for
inclusion in BERM. When compared with testing data, models
for estimating AGB, CHL, foliar N, and LAI, had nRMSEs of <
11%, and correlations ranged from 0.20 to 0.57 (Table S2;
Figs S3–S6). We also estimated model environmental variables
(see Table 1 for a list and Figs S7–S9), such as inundation inten-
sity, which was generally highest in the fall and lowest in the
spring (Fig. S8).

Green-up day of year was another input variable we consid-
ered, based on mean daily soil temperature, Ts, estimated as:

Ts ¼ 4:74�2:22Elevationþ0:15LST�0:71TaðD�1Þ

þ1:47TaðD�2Þ �0:14cos 2πDð1=4Þ
� �

þ0:14cos 4πDð1=7Þ
� �

where R2 for the Ts model was 0.99 and P-values for all parame-
ters were < 0.004. The subsequent green-up estimate, derived
from TDD, predicted green-up day of year with a RMSE of 9.3

d, whereas spatial variation in green-up date across the marsh can
be > one month (O’Connell et al., 2020) (Fig. S9).

Belowground Ecosystem Resiliency Model (BERM) for
estimating belowground biomass (BGB)

The final five cross-validated outer EXB models for predicting
BGB included only 33 out of the 131 potential predictors (Fig.
3). These five models were averaged together to create our final
result and relied heavily on flooded observations, elevation, as
well as longer-term averages of LST, AGB, and inundation. In
general, longer-term metrics were more important than shorter-
term ones. Vegetation-related metrics, such as AGB, LAI, foliar
N, CHL, and phenology variables, ‘green-up day of year’ and
‘days since green-up’ were also included in the model. Of the
physical variables, those related to vapor pressure, precipitation,
maximum and minimum air temperature, LST, inundation, dry-
ness, and flooded observations were included.

BERM predicted BGB across testing data with RMSE of
313 g m−2 (RMSE range across all cross-validations: 282–
347 g m−2 Table 3; Fig. 4), whereas field data ranged from 191
to 2495 g m−2. Maximum and minimum BGB and AGB were
both highest during September and lowest during January/
February (Figs S3, 5), which corresponded with the field data.
Regression of observed vs predicted testing data from each cross-
validation (Methods S5; Table 4) had explained variance (R2) of
0.62 to 0.77. Further, in four out of the five cases, cross-validated
results were unbiased (regression intercept β0 equal to zero) (e.g.
the regression slope β1 did not differ from the 1 : 1 line). The
decomposition of the sums of squares prediction error (SSPE)
(Methods S5) revealed that > 89% of the prediction error was
from unexplained variance rather than model bias.

Evaluation of model performance across sites and years

We also compared testing data model performance across sites
and years (Table 3). Mean Pearson’s r was 0.83, with the lowest r
at flux tower marsh B and highest at flux tower mash A (Table 3).
nRMSE averaged 11% across all the data, but was only < 25% at
flux marsh A. MAEs from the five cross validation datasets
spanned both negative and positive values across all sites except
UGAMI marsh. Across years at flux tower marsh A, the only site
with multiple years of data available, nRMSE was generally less
than 25%, suggesting BERM could capture inter-annual cycles
when appropriate training data were provided. However, for the
year with the fewest testing data observations (2014), nRMSE
averaged 39%, highlighting the importance of observation den-
sity for improving the model.

Discussion

BERM estimates near real time spatiotemporal variation in BGB
of Spartina alterniflora salt marshes from remote sensing data.
BGB predictions corresponded with field estimates (average r =
0.83; nRMSE = 11%). The model provided unbiased estimates
across the range of observed BGB, suggesting it reliably tracks

Fig. 2 An overview of the land cover classifications in the flux tower salt
marsh area on Sapelo Island, where extensive Spartina alterniflora
marshes are found (modified from Hladik et al., 2013). Locations of
coincident vegetation biomass plots are also shown (fa, Flux marsh A;
fb, Flux marsh B). We applied the Belowground Ecosystem Resiliency
Model (BERM) workflow to the areas of Spartina alterniflora cover in this
region, in order to provide examples of BERM outputs.
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BGB patterns. Most of the model error was attributable to unex-
plained variance, and likely resulted from causes that are chal-
lenging to measure through remote sensing methods, such as
genetic diversity, herbivory pressure, soil metabolites, or other
factors. However, BERM relies on a broad suite of biophysical
predictors, and can track belowground plant growth related to
change in aboveground vegetation and environmental gradients.
The accuracy is sufficient to evaluate spatial patterns, identify
areas experiencing either very high or low biomass production,
and track relative patterns and trajectories. BERM can be directly
applied to marshes where the range of environmental variables is
similar to those here (Table 2), and can be extended to other sys-
tems where training data are available. Because BERM provides
site-wide estimates, this is a promising approach for estimating
BGB patterns and trends at broad-scales.

Some of the most important BERM variables were related to
wetland hydrology, such as inundation intensity and elevation
(Fig. 3). Inundation intensity was a combination of inundation
frequency/duration and water depth. Thus, lower elevation
marsh areas with higher water depths and poorly drained areas
with longer flood duration had increased inundation intensity.

This hydrology relationship was not surprising, as both flooding
duration and depth drive plant productivity (Kirwan & Megoni-
gal, 2013; Voss et al., 2013), through relationships with tidal
flushing of soil metabolites, nutrient delivery, soil salinity, and
soil anoxia. Tidal flooding brings in oxygenated water and nutri-
ents, as well as flushes soil salinity, which can have a positive
impact on plant growth following tidal draining. However, tidal
flooding also slows plant gas exchange (Kathilankal et al., 2008),
and deep and prolonged flooding causes respiratory deficits
(Mendelssohn et al., 1981).

Variables related to ɛ (production efficiency) were also impor-
tant in BERM, including temperature, precipitation, and vapor
pressure. BERM included LST, a proxy for plant canopy temper-
ature. Early in the year, increasing LST likely increases plant
metabolism and production, whereas later in the summer, high
canopy temperatures during drought can cause higher soil salin-
ity, water limitation, and plant stress (Schalles et al., 2013; Mik-
lesh & Meile, 2018). For example, Schalles et al. (2013)
suggested drought on Sapelo Island negatively impacted Spartina
alterniflora AGB by increasing soil salinity and evapotranspira-
tion, resulting in long-term AGB declines of as much as 39%

Fig. 3 Features selected for inclusion in the
final Belowground Ecosystem Resiliency
Model (BERM) output and their average
importance across the cross-validated
models, where error bars span the range of
importance values across these models
(minimum–maximum). In total 33 features
were selected for inclusion in the model.
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over a 28-yr period. Such droughts can be exacerbated by high
temperatures and porewater salinity. In Sapelo Spartina alterni-
flora marshes, the latter varies from 20 to 60 pss-78, depending
on year, season, and marsh elevation, as a consequence of precipi-
tation, temperature, evapotranspiration, tidal flooding frequency,
and river discharge (Miklesh & Meile, 2018). LST is also related
to soil temperature, which varies spatially and likely similarly
influences root metabolism (Alber & O’Connell, 2019). Vapor
pressure, a variable used to calculate vapor pressure deficit and
evapotranspiration, also is related to plant water stress (Mass-
mann et al., 2019). Thus, it was not surprising that LST, precipi-
tation, and vapor pressure were important model predictors.
Altogether, these environmental variables influence rates of

photosynthesis and respiration, and were likely important for
constraining model productivity estimates.

BERM also relied on aboveground variables that drive plant
productivity. For example, NDVI, a proxy for fAPAR, and
canopy CHL were both important and have a close relationship
with GPP/NPP (Monteith, 1977; Ruimy et al., 1994; Gitelson
et al., 2006). CHL and fAPAR represent the amount of CHL
available to conduct photosynthesis and the light available to sim-
ulate photosynthetic activity, respectively. Additionally, root :
shoot ratios vary predictably with plant nutrient status (Morris,
1982; Morris et al., 2013; O’Connell et al., 2014), and foliar N
provides a proxy for nutrient status. Thus, the combination of
foliar N and AGB can help estimate BGB (O’Connell et al.,

Table 3 Goodness-of-fit metrics for the final Spartina alterniflora belowground biomass output, including mean absolute error (MAE) (g m−2), root mean
squared error (RMSE) (g m−2), normalized RMSE (nRMSE)(%), coefficient of variation of RMSE (COV RMSE) (%), and correlation (r) for all the testing
data combined (‘all’), for testing data from each site (‘fluxa’, ‘fluxb’, ‘skida’, and ‘ugami’) (for site comparisons, data are from 2016), and for each year
(2014–2019, where 2014 predictions were only available after June)

Type MAE RMSE nRMSE COV RMSE Correlation n-train n-test

All 8 (−91–78) 312 (282–347) 11 (10–12) 28 (25–31) 0.83 (0.79–0.88) 223 (219–234) 116 (105–120)
Site

fluxa 8 (−80–92) 383 (180–622) 11 (10–12) 27 (25–29) 0.82 (0.80–0.87) 191 (189–199) 101 (93–103)
fluxb 60 (−77–153) 225 (122–265) 26 (14–30) 35 (19–41) 0.56 (0.03–0.99) 10 (9–12) 5 (3–6)
skida 163 (−2–313) 307 (206–382) 44 (29–55) 67 (45–83) 0.67 (0.45–0.98) 10 (9–12) 5 (3–6)
ugami −175 (−388–−58) 383 (180–622) 27 (13–44) 25 (12–41) 0.72 (0.51–0.95) 11 (11–12) 6 (5–6)
Year

2014 138 (113–164) 366 (223–570) 39 (31–47) 29 (23–35) 0.47 (0.01–0.92) 3 (0–5) 2 (0–5)
2015 −41 (−215–141) 316 (246–374) 24 (19–29) 27 (21–32) 0.68 (0.53–0.88) 36 (20–55) 24 (5–40)
2016 90 (33–144) 339 (266–409) 16 (13–20) 31 (24–37) 0.74 (0.61–0.85) 39 (35–40) 21 (20–25)
2017 82 (−28–221) 247 (188–356) 15 (11–21) 24 (18–34) 0.85 (0.79–0.96) 45 (40–50) 21 (16–26)
2018 −70 (−145–4) 278 (217–344) 10 (8–13) 20 (16–25) 0.95 (0.92–0.97) 48 (36–54) 24 (18–36)
2019 150 (−138–382) 366 (223–570) 21 (13–33) 39 (24–61) 0.45 (−1.00–1.00) 21 (16–27) 8 (2–13)

Sample size for training and testing data are provided in the columns n-train and n-test, respectively. Numbers in parenthesis indicate the range observed
(minium–maximum) in the testing data across all the cross-validated models.

(a) (b)

Fig. 4 Range in root mean squared error
(RMSE) of fit between field measured and
model predicted Spartina alterniflora
belowground biomass (g m−2) for the
training and testing sets across all five cross-
validations (a); Average measured vs
predicted belowground biomass across all
five cross-validations for the training and
testing sets combined (b).
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2015). We additionally included the day of spring green-up for
each pixel, allowing us to account for spatiotemporal heterogene-
ity in growing season timing (O’Connell et al., 2020).

Evaluation of model performance across sites and years

While BERM performed well overall, there was variability in model
performance across sites and years. Performance was best in Flux

tower marsh A in terms of MAE, nRMSE, and correlation, likely
because multiple years were available for training. Similarly,
goodness-of-fit metrics were better for years where we had more
testing data for model evaluation. For this site, as well as for other
sites where nRMSE averaged < 28% (Flux tower marsh B,
UGAMI marsh), we are confident BERM can produce quantitative
estimates of BGB and evaluate spatiotemporal patterns, though the
model could be improved by additional ground-truth data.

Fig. 5 An example of a Belowground
Ecosystem Resiliency Model (BERM)
predicted time series for Spartina alterniflora
belowground biomass (g m−2) for the flux
tower marsh area. See Fig. 2: for land cover
classifications for this area.

Table 4 Additional goodness-of-fit metrics for testing data from each cross-validated (CV) model for the final Spartina alterniflora belowground biomass
output.

CV R2 β0 β1 SSPE Ubias Uβ1=1 Uerror

1 0.69 70.2 � 71.7 0.92 � 0.06 10 288 907 0.01 0.02 0.97
2 0.66 45.9 � 75.4 0.97 � 0.06 12 044 544 0.00 0.00 1.00
3 0.77 −75.4 � 65.9 1.03 � 0.05 9 389 720 0.02 0.00 0.98
4 0.67 93.8 � 75.3 0.85 � 0.06** 10 737 935 0.06 0.05 0.89
5 0.62 185.3 � 73.4* 0.91 � 0.07 14 469 802 0.07 0.02 0.92

These metrics are derived from the regression of the observed values (response variable) against the Belowground Ecosystem Resiliency Model (BERM)
predicted values. The metrics include explained variance (R2) for the regression, the regression intercept (β0) and slope (β1) (mean � SE), where intercepts
that significantly differ from zero and slopes that significantly differ from one are indicated. Intercepts differing from zero reflect a consistent model bias
across all observed values, whereas slopes differing from one reflect model inconsistency from the 1 : 1 line over the range of observed values. We also
present the sums of squares prediction error (SSPE), which we further decomposed through Theil’s partial inequality coefficients into different sources of
error, including the proportion of error resulting from differences between observed vs predicted values (Ubias), the proportion of error associated with
deviations in slope from the 1 : 1 line (Uβ1=1), and the proportion of error from unexplained model variance (Uerror). Units are in g m−2 for the slope,
intercept, and SSPE.
*, P < 0.05 for H0: β0 = 0; **, P < 0.05 for H0: β1 = 1.
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BERM performed poorest at Skidaway, the only site not on
Sapelo Island. Both biotic and abiotic conditions may differ
there, for example, in terms of flooding and weather dynamics,
or Spartina alterniflora population structure. It would be useful
to have multi-year data to allow the model to learn from these
differences. When adequate ground-truth data are lacking, we
caution against using BERM for quantitative BGB estimates, par-
ticularly for sites where conditions are very different from those
modeled here. However, BERM should still be useful for evaluat-
ing spatiotemporal patterns.

Future applications

BERM-estimated BGB has multiple applications within coastal
marshes. BERM can map plant productivity trends across broad
spatial scales and over time, and could form the basis of long-
term monitoring. Areas with low BGB are potentially at risk
from sea level rise, as BGB contributes to vertical marsh accretion
(Nyman et al., 1993; DeLaune & Pezeshki, 2003; Mudd et al.,
2009) and might indicate priority sites for marsh restoration, as
BGB may be a more sensitive indicator of ecosystem function
than AGB (Stagg et al., 2017). BGB is also important for evalu-
ating wetland carbon sequestration (Morris et al., 2002;
DeLaune & Pezeshki, 2003; Mudd et al., 2009). BERM can also
be linked with coastal marsh blue carbon models. In the future,
BERM could be updated to use other remote sensing data, such
as Sentinel-2, or future satellite platforms such as Landsat-9. Fur-
ther, while we trained our model for use in Spartina alterniflora
marshes, a similar process should be possible for other plant
species. Overall, BERM estimates help map marsh function and
provide a critical tool for decision-making in coastal areas. This is
the first model of this kind, and can be used for long-term and
broad-scale monitoring of ecosystem trajectories.
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described in this article are available at: https://zenodo.org/bad
ge/latestdoi/382914221
The most recent version of BERM is available at: https://github.c
om/jloconnell/BERM
The data that support the findings of this study are openly avail-
able in the GCE-LTER Data Catalog:
Repeat measurements of Flux tower marsh A vegetation data
from 2013 to 2019 at: https://doi.org/10.6073/pasta/ed6fb03c
81a39babfdbb7be3c076cb65
Repeat measurements of vegetation plots for the 2016 growing
season from all sites at: https://doi.org/10.6073/pasta/03f4f78c
6498aecca34faf4339591129
Extra LAI measurements from other years, as published in Haw-
man et al. (2021): https://doi.org/10.6073/pasta/53a3e61158aa
058aee50be72a1156c83
Soil temperature measurements, as published in Alber & O’Con-
nell (2019): https://doi.org/10.6073/pasta/db52896274df
333805f2043efb7e5710
Corrected DEM data for GCE-LTER, as published in Hladik et
al. (2013): https://doi.org/10.6073/pasta/4c5187ef603f70cd0a
77ece24ef0fed9
Vegetation classification map for GCE-LTER, as published in
Hladik et al. (2013):
https://doi.org/10.6073/pasta/575c75149bdaa30a68507e
46607ce784
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Additional Supporting Information may be found online in the
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Fig. S2 Theoretical diagram of the spatial cross-validation work-
flow.

Fig. S3 BERM predicted time series for aboveground biomass.
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Table S1 Field campaign sampling frequency and dates.

Table S2 Testing data mean goodness-of-fit metrics.
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